Fish and chips: Using machine learning to estimate the effects of basal cortisol on fish foraging behavior

Author:

Bessa Wallace M.,Cadengue Lucas S.,Luchiari Ana C.

Abstract

Foraging is an essential behavior for animal survival and requires both learning and decision-making skills. However, despite its relevance and ubiquity, there is still no effective mathematical framework to adequately estimate foraging performance that also takes interindividual variability into account. In this work, foraging performance is evaluated in the context of multi-armed bandit (MAB) problems by means of a biological model and a machine learning algorithm. Siamese fighting fish (Betta splendens) were used as a biological model and their ability to forage was assessed in a four-arm cross-maze over 21 trials. It was observed that fish performance varies according to their basal cortisol levels, i.e., a reduced average reward is associated with low and high levels of basal cortisol, while the optimal level maximizes foraging performance. In addition, we suggest the adoption of the epsilon-greedy algorithm to deal with the exploration-exploitation tradeoff and simulate foraging decisions. The algorithm provided results closely related to the biological model and allowed the normalized basal cortisol levels to be correlated with a corresponding tuning parameter. The obtained results indicate that machine learning, by helping to shed light on the intrinsic relationships between physiological parameters and animal behavior, can be a powerful tool for studying animal cognition and behavioral sciences.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Publisher

Frontiers Media SA

Subject

Behavioral Neuroscience,Cognitive Neuroscience,Neuropsychology and Physiological Psychology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3