A Nomogram Model Identifies Eosinophilic Frequencies to Powerfully Discriminate Kawasaki Disease From Febrile Infections

Author:

Liu Xiao-Ping,Huang Yi-Shuang,Xia Han-Bing,Sun Yi,Lang Xin-Ling,Li Qiang-Zi,Liu Chun-Yi,Kuo Ho-Chang,Huang Wei-Dong,Liu Xi

Abstract

Background: Kawasaki disease (KD) is a form of systemic vasculitis that occurs primarily in children under the age of 5 years old. No single laboratory data can currently distinguish KD from other febrile infection diseases. The purpose of this study was to establish a laboratory data model that can differentiate between KD and other febrile diseases caused by an infection in order to prevent coronary artery complications in KD.Methods: This study consisted of a total of 800 children (249 KD and 551 age- and gender-matched non-KD febrile infection illness) as a case-control study. Laboratory findings were analyzed using univariable, multivariable logistic regression, and nomogram models.Results: We selected 562 children at random as the model group and 238 as the validation group. The predictive nomogram included high eosinophil percentage (100 points), high C-reactive protein (93 points), high alanine transaminase (84 points), low albumin (79 points), and high white blood cell (64 points), which generated an area under the curve of 0.873 for the model group and 0.905 for the validation group. Eosinophilia showed the highest OR: 5.015 (95% CI:−3.068–8.197) during multiple logistic regression. The sensitivity and specificity in the validation group were 84.1 and 86%, respectively. The calibration curves of the validation group for the probability of KD showed near an agreement to the actual probability.Conclusion: Eosinophilia is a major factor in this nomogram model and had high precision for predicting KD. This report is the first among the existing literature to demonstrate the important role of eosinophil in KD by nomogram.

Funder

Sanming Project of Medicine in Shenzhen

Publisher

Frontiers Media SA

Subject

Pediatrics, Perinatology and Child Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3