Parent-offspring genotyped trios unravelling genomic regions with gametic and genotypic epistatic transmission bias on the cattle genome

Author:

Id-Lahoucine Samir,Casellas Joaquim,Miglior Filippo,Schenkel Flavio S.,Cánovas Angela

Abstract

Several biological mechanisms affecting the sperm and ova fertility and viability at developmental stages of the reproductive cycle resulted in observable transmission ratio distortion (i.e., deviation from Mendelian expectations). Gene-by-gene interactions (or epistasis) could also potentially cause specific transmission ratio distortion patterns at different loci as unfavorable allelic combinations are under-represented, exhibiting deviation from Mendelian proportions. Here, we aimed to detect pairs of loci with epistatic transmission ratio distortion using 283,817 parent-offspring genotyped trios (sire-dam-offspring) of Holstein cattle. Allelic and genotypic parameterization for epistatic transmission ratio distortion were developed and implemented to scan the whole genome. Different epistatic transmission ratio distortion patterns were observed. Using genotypic models, 7, 19 and 6 pairs of genomic regions were found with decisive evidence with additive-by-additive, additive-by-dominance/dominance-by-additive and dominance-by-dominance effects, respectively. Using the allelic transmission ratio distortion model, more insight was gained in understanding the penetrance of single-locus distortions, revealing 17 pairs of SNPs. Scanning for the depletion of individuals carrying pairs of homozygous genotypes for unlinked loci, revealed 56 pairs of SNPs with recessive epistatic transmission ratio distortion patterns. The maximum number of expected homozygous offspring, with none of them observed, was 23. Finally, in this study, we identified candidate genomic regions harboring epistatic interactions with potential biological implications in economically important traits, such as reproduction.

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3