PGAGP: Predicting pathogenic genes based on adaptive network embedding algorithm

Author:

Zhang Yan,Xiang Ju,Tang Liang,Yang Jialiang,Li Jianming

Abstract

The study of disease-gene associations is an important topic in the field of computational biology. The accumulation of massive amounts of biomedical data provides new possibilities for exploring potential relations between diseases and genes through computational strategy, but how to extract valuable information from the data to predict pathogenic genes accurately and rapidly is currently a challenging and meaningful task. Therefore, we present a novel computational method called PGAGP for inferring potential pathogenic genes based on an adaptive network embedding algorithm. The PGAGP algorithm is to first extract initial features of nodes from a heterogeneous network of diseases and genes efficiently and effectively by Gaussian random projection and then optimize the features of nodes by an adaptive refining process. These low-dimensional features are used to improve the disease-gene heterogenous network, and we apply network propagation to the improved heterogenous network to predict pathogenic genes more effectively. By a series of experiments, we study the effect of PGAGP’s parameters and integrated strategies on predictive performance and confirm that PGAGP is better than the state-of-the-art algorithms. Case studies show that many of the predicted candidate genes for specific diseases have been implied to be related to these diseases by literature verification and enrichment analysis, which further verifies the effectiveness of PGAGP. Overall, this work provides a useful solution for mining disease-gene heterogeneous network to predict pathogenic genes more effectively.

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

Reference73 articles.

1. Distributed large-scale natural graph factorization;Ahmed,2013

2. Dysregulation of endothelin-1: Implications for health disparities in Alzheimer's disease;Alcendor;J. Pers. Med.,2020

3. Recent advances in network-based methods for disease gene prediction;Ata;Brief. Bioinform,2021

4. Laplacian eigenmaps and spectral techniques for embedding and clustering;Belkin;Adv. neural Inf. Process. Syst.,2001

5. IL-1β, IL-6, TNF- α and CRP in elderly patients with depression or Alzheimer's disease: Systematic review and meta-analysis;Bolós;Biomol. concepts,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3