Stacked generalization as a computational method for the genomic selection

Author:

Kim Sunhee,Chu Sang-Ho,Park Yong-Jin,Lee Chang-Yong

Abstract

As genomic selection emerges as a promising breeding method for both plants and animals, numerous methods have been introduced and applied to various real and simulated data sets. Research suggests that no single method is universally better than others; rather, performance is highly dependent on the characteristics of the data and the nature of the prediction task. This implies that each method has its strengths and weaknesses. In this study, we exploit this notion and propose a different approach. Rather than comparing multiple methods to determine the best one for a particular study, we advocate combining multiple methods to achieve better performance than each method in isolation. In pursuit of this goal, we introduce and develop a computational method of the stacked generalization within ensemble methods. In this method, the meta-model merges predictions from multiple base models to achieve improved performance. We applied this method to plant and animal data and compared its performance with currently available methods using standard performance metrics. We found that the proposed method yielded a lower or comparable mean squared error in predicting phenotypes compared to the current methods. In addition, the proposed method showed greater resistance to overfitting compared to the current methods. Further analysis included statistical hypothesis testing, which showed that the proposed method outperformed or matched the current methods. In summary, the proposed stacked generalization integrates currently available methods to achieve stable and better performance. In this context, our study provides general recommendations for effective practices in genomic selection.

Publisher

Frontiers Media SA

Reference52 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3