A Sequence Obfuscation Method for Protecting Personal Genomic Privacy

Author:

Wan Shibiao,Wang Jieqiong

Abstract

With the technological advances in recent decades, determining whole genome sequencing of a person has become feasible and affordable. As a result, large-scale individual genomic sequences are produced and collected for genetic medical diagnoses and cancer drug discovery, which, however, simultaneously poses serious challenges to the protection of personal genomic privacy. It is highly urgent to develop methods which make the personal genomic data both utilizable and confidential. Existing genomic privacy-protection methods are either time-consuming for encryption or with low accuracy of data recovery. To tackle these problems, this paper proposes a sequence similarity-based obfuscation method, namely IterMegaBLAST, for fast and reliable protection of personal genomic privacy. Specifically, given a randomly selected sequence from a dataset of genomic sequences, we first use MegaBLAST to find its most similar sequence from the dataset. These two aligned sequences form a cluster, for which an obfuscated sequence was generated via a DNA generalization lattice scheme. These procedures are iteratively performed until all of the sequences in the dataset are clustered and their obfuscated sequences are generated. Experimental results on benchmark datasets demonstrate that under the same degree of anonymity, IterMegaBLAST significantly outperforms existing state-of-the-art approaches in terms of both utility accuracy and time complexity.

Funder

National Cancer Institute

Publisher

Frontiers Media SA

Subject

Genetics (clinical),Genetics,Molecular Medicine

Reference29 articles.

1. Ratio Utility and Cost Analysis for Privacy Preserving Subspace Projection;Al,2017

2. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs;Altschul;Nucleic Acids Res.,1997

3. Genoppml–a Framework for Genomic Privacy-Preserving Machine Learning;Carpov;Cryptology ePrint Archive,2021

4. Differential Privacy protection against Membership Inference Attack on Machine Learning for Genomic Data;Chen,2020

5. Genomic Medicine, Health Information Technology, and Patient Care;Chute;JAMA,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3