Protocatechualdehyde Rescues Oxygen-Glucose Deprivation/Reoxygenation-Induced Endothelial Cells Injury by Inducing Autophagy and Inhibiting Apoptosis via Regulation of SIRT1

Author:

Cao Shidong,Chen Senmiao,Qiao Xilin,Guo Yan,Liu Fang,Ding Zhishan,Jin Bo

Abstract

Background: Oxidative stress-induced endothelial cell death, such as apoptosis and autophagy, plays a critical role in ischemia-reperfusion injury. Protocatechualdehyde (PCA) is a major bioactive component of the traditional Chinese medicine Salvia miltiorrhiza Bunge (Lamiaceae), and it has been proved to be effective in the prevention and treatment of ischemic cardiovascular and cerebrovascular diseases. However, its role in oxidative stress-induced endothelial cell death and its underlying mechanisms remains unclear. This study aims to investigate the effects and mechanisms of PCA on endothelial cell apoptosis and autophagy induced by oxygen-glucose deprivation/reoxygenation (OGD/R) injury.Methods: After OGD/R induction, human umbilical vein endothelial cells (HUVECs) were treated with different concentrations of PCA. Cell viability, apoptosis, and autophagy were detected by Cell Counting Kit-8 assay, flow cytometry, and monodansylcadaverine assay, respectively. Western blot was applied to explore the effects of PCA on the expression levels of relevant protein factors.Results: The results show that PCA significantly promoted cell survival rate and cell proliferation and enhanced the antioxidant activity in OGD/R-induced HUVECs. PCA inhibited HUVECs apoptosis, as evidenced by decreased expression of cleaved-caspase-3, Bcl2-associated X (BAX), and increased expression of Bcl-2. PCA induced autophagy by reducing the expression of P62 while increasing the expression of Beclin-1 and LC3 II/I. Meanwhile, PCA enhanced the expression of Sirtuin 1 (SIRT1) and suppressed the expression of P53. When SIRT1 was inhibited by selisistat or SIRT1 small-interfering RNA, the anti-apoptotic and pro-autophagy abilities of PCA were attenuated.Conclusion: These results demonstrated that PCA rescued HUVECs from OGD/R-induced injury by promoting autophagy and inhibiting apoptosis through SIRT1 and could be developed as a potential therapeutic agent against ischemic diseases.

Funder

National Key Research and Development Program of China

Publisher

Frontiers Media SA

Subject

Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3