Bidirectional regulatory effects of Cordyceps on arrhythmia: Clinical evaluations and network pharmacology

Author:

Wang Lijuan,Sun Helin,Yang Meina,Xu Yulin,Hou Linlin,Yu Haomiao,Wang Xueyin,Zhang Zhongwen,Han Jinxiang

Abstract

Background: Cordyceps is a precious Chinese herbal medicine with rich bio-active ingredients and is used for regulating arrhythmia alongside routine treatments. However, the efficacy and potential mechanisms of Cordyceps on patients with arrhythmia remain unclear.Methods: Randomized controlled trials of bradycardia treatment with Cordyceps were retrieved from diverse databases and available data. Dichotomous variables were expressed as a risk ratio (RR) with a 95% confidence interval (CI). Continuous variables were expressed as a standardized mean difference (SMD) with a 95% CI. Network pharmacology was used to identify potential targets of Cordyceps for arrhythmia. Metascape was used for gene ontology (GO) and genome (KEGG) pathway enrichment analysis.Results: Nineteen trials included 1,805 patients with arrhythmia, of whom 918 were treated with Ningxinbao capsule plus routine drugs, and, as a control, 887 were treated with only routine drugs. Six trials reported on bradycardia and the other 13 on tachycardia. Treatment with Cordyceps significantly improved the total efficacy rate in both bradycardia (RR = 1.24; 95% CI, 1.15 to 1.35; Pz <0.00001) and tachycardia (RR = 1.27; 95% CI, 1.17 to 1.39; Pz <0.00001). Cordyceps also had beneficial secondary outcomes. No serious adverse events occurred in patients treated with Cordyceps. The results of KEGG pathway enrichment analysis were mainly connected to adrenergic signaling in cardiomyocytes and the PI3K-Akt signaling pathway. IL6, TNF, TP53, CASP3, CTNNB1, EGF, and NOS3 might be key targets for Cordyceps in the treatment of arrhythmia.Conclusion: This study confirmed that Cordyceps has a certain positive effect on the treatment of arrhythmia and that its main mechanism may be through the regulation of adrenergic signaling in cardiomyocytes and the PI3K-Akt signaling pathway.

Funder

Natural Science Foundation of Shandong Province

Postdoctoral Research Foundation of China

Natural Science Foundation of Guangdong Province

Publisher

Frontiers Media SA

Subject

Pharmacology (medical),Pharmacology

Reference67 articles.

1. Circadian rhythm of cardiac electrophysiology, arrhythmogenesis, and the underlying mechanisms;Black;Heart rhythm.,2019

2. IGF-1 modulates N and L calcium channels in a PI 3-kinase-dependent manner;Blair;Neuron,1997

3. Tachycardia;Boateng;Dis. Mon.,2013

4. Serum uric acid levels are associated with cardiovascular risk score: A post hoc analysis of the eurika study;Borghi;Int. J. Cardiol.,2018

5. Efficacy of Ningxinbao capsule combined with amiodarone hydrochloride tablets in the treatment of patients with paroxysmal atrial fibrillation [In Chinese];Cai;Mod. Diagnosis Ther.,2020

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3