Transcriptome analysis to explore the mechanism of downregulated TNIK influencing the effect of risperidone

Author:

Yuan Ruixue,Li Yaojing,Li Xiangyi,Fu Yingmei,Ning Ailing,Wang Dongxiang,Zhang Ran,Yu Shunying,Xu Qingqing

Abstract

BackgroundRisperidone is one of the most reliable and effective antipsychotics for schizophrenia treatment. However, the mechanism of action of risperidone is not yet fully understood. Traf2 and Nck-interacting protein kinase (TNIK), a schizophrenia susceptibility gene, is associated with risperidone treatment response. Our previous in vitro experiments confirmed that downregulated TNIK affected the effect of risperidone on downstream targets. However, the effect of downregulated TNIK on risperidone-induced molecular expression remains to be further explored.MethodsTranscriptome analysis was performed on U251 cells subjected to risperidone, TNIK siRNA, and no treatment, respectively. Compared to the no-treatment group, two groups of DEGs were screened out and then intersected with the schizophrenia-related genes to screen the cross-talk genes. Those DEGs were analyzed using GO and KEGG. STRING and Cytoscape were used to construct a protein-protein interaction (PPI) network for the cross-talk gene.ResultsThe results showed that the parathyroid hormone synthesis, secretion, and action were significantly enriched after risperidone treatment. Downregulated TNIK could have an impact on the collagen-containing extracellular matrix, signaling receptor activator activity, and PI3K-Akt signaling pathway. Interestingly, bone mineralization function and calcium signaling pathway were enriched in the cross-talk genes. Additionally, FGFR2, FGF1, and FGFR might be the potential targets for TNIK affecting the effects of risperidone.ConclusionThe study indicated that risperidone primarily influences functions and/or pathways associated with bone metabolism, potentially contributing to the adverse effect of osteoporosis. Our study may offer a novel perspective on investigating the mechanisms underlying the adverse effects of risperidone.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3