Development of a Network-Based Signal Detection Tool: The COVID-19 Adversome in the FDA Adverse Event Reporting System

Author:

Fusaroli Michele,Raschi Emanuel,Gatti Milo,De Ponti Fabrizio,Poluzzi Elisabetta

Abstract

Introduction: The analysis of pharmacovigilance databases is crucial for the safety profiling of new and repurposed drugs, especially in the COVID-19 era. Traditional pharmacovigilance analyses–based on disproportionality approaches–cannot usually account for the complexity of spontaneous reports often with multiple concomitant drugs and events. We propose a network-based approach on co-reported events to help assessing disproportionalities and to effectively and timely identify disease-, comorbidity- and drug-related syndromes, especially in a rapidly changing low-resources environment such as that of COVID-19.Materials and Methods: Reports on medications administered for COVID-19 were extracted from the FDA Adverse Event Reporting System quarterly data (January–September 2020) and queried for disproportionalities (Reporting Odds Ratio corrected for multiple comparisons). A network (the Adversome) was estimated considering events as nodes and conditional co-reporting as links. Communities of significantly co-reported events were identified. All data and scripts employed are available in a public repository.Results: Among the 7,082 COVID-19 reports extracted, the seven most frequently suspected drugs (remdesivir, hydroxychloroquine, azithromycin, tocilizumab, lopinavir/ritonavir, sarilumab, and ethanol) have shown disproportionalities with 54 events. Of interest, myasthenia gravis with hydroxychloroquine, and cerebrovascular vein thrombosis with azithromycin. Automatic clustering identified 13 communities, including a methanol-related neurotoxicity associated with alcohol-based hand-sanitizers and a long QT/hepatotoxicity cluster associated with azithromycin, hydroxychloroquine and lopinavir-ritonavir interactions.Conclusion: Findings from the Adversome detect plausible new signals and iatrogenic syndromes. Our network approach complements traditional pharmacovigilance analyses, and may represent a more effective signal detection technique to guide clinical recommendations by regulators and specific follow-up confirmatory studies.

Publisher

Frontiers Media SA

Subject

Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3