Impairment of exocytotic transmitter release by decynium-22 through an inhibition of ion channels

Author:

Haar Gabriele,Hrachova Katsiaryna,Wagner Tanja,Boehm Stefan,Schicker Klaus

Abstract

Introduction: In addition to members of the family of Na+/Cl dependent monoamine transporters, organic cation transporters (OCTs), in particular OCT3, as well as the plasma membrane monoamine transporter (PMAT) may contribute to neuronal reuptake of according neurotransmitters. As opposed to the numerous blockers of monoamine transporters, only a very limited number of specific blockers of OCT3 and PMAT are available. In fact, decynium-22 is the only blocking agent with micromolar affinities for both transport proteins, and this molecule is frequently used to establish roles of OCT3 and/or PMAT as targets for antidepressant drugs and psychostimulants, respectively.Methods/Results: To test for a function of these transporters in the sympathetic nervous system, uptake and release of [3H]1-methyl-4-phenylpyridinium (MPP+) was investigated in primary cultures of rat superior cervical ganglia. Uptake was reduced by cocaine or desipramine, blockers of the noradrenaline transporter, by about 70% and by corticosterone or β-estradiol, blockers of OCT3, by about 30%; decynium-22 achieved complete inhibition of uptake with half maximal effects at 3 μM. Depolarization dependent release was enhanced by corticosterone or β-estradiol, but reduced by decynium-22. As the latter effect is unlikely to be related to actions at OCT3 and/or PMAT, electrophysiological recordings were performed to reveal that decynium-22 inhibits action potential firing and currents through voltage activated calcium channels in superior cervical ganglion neurons.Discussion: These results demonstrate that decynium-22 can impair exocytotic neurotransmitter release by interfering with several types of ion channels. Such transporter-independent effects of decynium-22 that my interfere with basic neuronal functions need to be considered when interpreting results obtained with decynium-22 as prototypic inhibitor of transmitter reuptake via OCT3 and/or PMAT.

Publisher

Frontiers Media SA

Subject

Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3