Next-generation risk assessment read-across case study: application of a 10-step framework to derive a safe concentration of daidzein in a body lotion

Author:

Najjar Abdulkarim,Kühnl Jochen,Lange Daniela,Géniès Camille,Jacques Carine,Fabian Eric,Zifle Anne,Hewitt Nicola J.,Schepky Andreas

Abstract

Introduction: We performed an exposure-based Next Generation Risk Assessment case read-across study using New Approach Methodologies (NAMs) to determine the highest safe concentration of daidzein in a body lotion, based on its similarities with its structural analogue, genistein. Two assumptions were: (1) daidzein is a new chemical and its dietary intake omitted; (2) only in vitro data were used for daidzein, while in vitro and legacy in vivo data for genistein were considered.Methods: The 10-step tiered approach evaluating systemic toxicity included toxicokinetics NAMs: PBPK models and in vitro biokinetics measurements in cells used for toxicogenomics and toxicodynamic NAMs: pharmacology profiling (i.e., interaction with molecular targets), toxicogenomics and EATS assays (endocrine disruption endpoints). Whole body rat and human PBPK models were used to convert external doses of genistein to plasma concentrations and in vitro Points of Departure (PoD) to external doses. The PBPK human dermal module was refined using in vitro human skin metabolism and penetration data.Results: The most relevant endpoint for daidzein was from the ERα assay (Lowest Observed Effective Concentration was 100 ± 0.0 nM), which was converted to an in vitro PoD of 33 nM. After application of a safety factor of 3.3 for intra-individual variability, the safe concentration of daidzein was estimated to be 10 nM. This was extrapolated to an external dose of 0.5 μg/cm2 for a body lotion and face cream, equating to a concentration of 0.1%.Discussion: When in vitro PoD of 33 nM for daidzein was converted to an external oral dose in rats, the value correlated with the in vivo NOAEL. This increased confidence that the rat oral PBPK model provided accurate estimates of internal and external exposure and that the in vitro PoD was relevant in the safety assessment of both chemicals. When plasma concentrations estimated from applications of 0.1% and 0.02% daidzein were used to calculate bioactivity exposure ratios, values were >1, indicating a good margin between exposure and concentrations causing adverse effects. In conclusion, this case study highlights the use of NAMs in a 10-step tiered workflow to conclude that the highest safe concentration of daidzein in a body lotion is 0.1%.

Publisher

Frontiers Media SA

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3