Author:
Taki Aya C.,Wang Tao,Nguyen Nghi N.,Ang Ching-Seng,Leeming Michael G.,Nie Shuai,Byrne Joseph J.,Young Neil D.,Zheng Yuanting,Ma Guangxu,Korhonen Pasi K.,Koehler Anson V.,Williamson Nicholas A.,Hofmann Andreas,Chang Bill C. H.,Häberli Cécile,Keiser Jennifer,Jabbar Abdul,Sleebs Brad E.,Gasser Robin B.
Abstract
Parasitic roundworms (nematodes) cause destructive diseases, and immense suffering in humans and other animals around the world. The control of these parasites relies heavily on anthelmintic therapy, but treatment failures and resistance to these drugs are widespread. As efforts to develop vaccines against parasitic nematodes have been largely unsuccessful, there is an increased focus on discovering new anthelmintic entities to combat drug resistant worms. Here, we employed thermal proteome profiling (TPP) to explore hit pharmacology and to support optimisation of a hit compound (UMW-868), identified in a high-throughput whole-worm, phenotypic screen. Using advanced structural prediction and docking tools, we inferred an entirely novel, parasite-specific target (HCO_011565) of this anthelmintic small molecule in the highly pathogenic, blood-feeding barber’s pole worm, and in other socioeconomically important parasitic nematodes. The “hit-to-target” workflow constructed here provides a unique prospect of accelerating the simultaneous discovery of novel anthelmintics and associated parasite-specific targets.
Funder
Australian Research Council
Subject
Pharmacology (medical),Pharmacology
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献