Combining a Pharmacological Network Model with a Bayesian Signal Detection Algorithm to Improve the Detection of Adverse Drug Events

Author:

Ji Xiangmin,Cui Guimei,Xu Chengzhen,Hou Jie,Zhang Yunfei,Ren Yan

Abstract

Introduction: Improving adverse drug event (ADE) detection is important for post-marketing drug safety surveillance. Existing statistical approaches can be further optimized owing to their high efficiency and low cost.Objective: The objective of this study was to evaluate the proposed approach for use in pharmacovigilance, the early detection of potential ADEs, and the improvement of drug safety.Methods: We developed a novel integrated approach, the Bayesian signal detection algorithm, based on the pharmacological network model (ICPNM) using the FDA Adverse Event Reporting System (FAERS) data published from 2004 to 2009 and from 2014 to 2019Q2, PubChem, and DrugBank database. First, we used a pharmacological network model to generate the probabilities for drug-ADE associations, which comprised the proper prior information component (IC). We then defined the probability of the propensity score adjustment based on a logistic regression model to control for the confounding bias. Finally, we chose the Side Effect Resource (SIDER) and the Observational Medical Outcomes Partnership (OMOP) data to evaluate the detection performance and robustness of the ICPNM compared with the statistical approaches [disproportionality analysis (DPA)] by using the area under the receiver operator characteristics curve (AUC) and Youden’s index.Results: Of the statistical approaches implemented, the ICPNM showed the best performance (AUC, 0.8291; Youden’s index, 0.5836). Meanwhile, the AUCs of the IC, EBGM, ROR, and PRR were 0.7343, 0.7231, 0.6828, and 0.6721, respectively.Conclusion: The proposed ICPNM combined the strengths of the pharmacological network model and the Bayesian signal detection algorithm and performed better in detecting true drug-ADE associations. It also detected newer ADE signals than a DPA and may be complementary to the existing statistical approaches.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Inner Mongolia

Natural Science Foundation of Anhui Province

Publisher

Frontiers Media SA

Subject

Pharmacology (medical),Pharmacology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3