An Imidazoline 2 Receptor Ligand Relaxes Mouse Aorta via Off-Target Mechanisms Resistant to Aging

Author:

Jiménez-Altayó Francesc,Cabrera Anna,Bagán Andrea,Giménez-Llort Lydia,D’Ocon Pilar,Pérez Belén,Pallàs Mercè,Escolano Carmen

Abstract

Imidazoline receptors (IR) are classified into three receptor subtypes (I1R, I2R, and I3R) and previous studies showed that regulation of I2R signaling has neuroprotective potential. In order to know if I2R has a role in modulating vascular tone in health and disease, we evaluated the putative vasoactive effects of two recently synthesized I2R ligands, diethyl (1RS,3aSR,6aSR)-5-(3-chloro-4-fluorophenyl)-4,6-dioxo-1-phenyl-1,3a,4,5,6,6a-hexahydropyrrolo[3,4-c]pyrrole -1-phosphonate (B06) and diethyl [(1-(3-chloro-4-fluorobenzyl)-5,5-dimethyl-4-phenyl-4,5-dihydro-1H-imidazol-4-yl]phosphonate] (MCR5). Thoracic aortas from Oncins France 1 (3- to 4-months-old) and C57BL/6 (3- to 4- and 16- to 17-months-old mice) were mounted in tissue baths to measure isometric tension. In young mice of both strains, MCR5 induced greater relaxations than either B06 or the high-affinity I2R selective ligand 2-(2-benzofuranyl)-2-imidazoline (2-BFI), which evoked marginal responses. MCR5 relaxations were independent of I2R, as IR ligands did not significantly affect them, involved activation of smooth muscle KATP channels and inhibition of L-type voltage-gated Ca2+ channels, and were only slightly modulated by endothelium-derived nitric oxide (negatively) and prostacyclin (positively). Notably, despite the presence of endothelial dysfunction in old mice, MCR5 relaxations were preserved. In conclusion, the present study provides evidence against a functional contribution of I2R in the modulation of vascular tone in the mouse aorta. Moreover, the I2R ligand MCR5 is an endothelium-independent vasodilator that acts largely via I2R-independent pathways and is resistant to aging. We propose MCR5 as a candidate drug for the management of vascular disease in the elderly.

Funder

Ministerio de Ciencia e Innovación

Generalitat de Catalunya

Publisher

Frontiers Media SA

Subject

Pharmacology (medical),Pharmacology

Reference41 articles.

1. Neuroprotective Effects of a Structurally New Family of High Affinity Imidazoline I2 Receptor Ligands;Abás;ACS Chem. Neurosci.,2017

2. Bicyclic α-Iminophosphonates as High Affinity Imidazoline I2 Receptor Ligands for Alzheimer's Disease;Abás;J. Med. Chem.,2020

3. Central Cardiovascular Effects of Alpha Adrenergic Drugs: Differences between Catecholamines and Imidazolines;Bousquet;J. Pharmacol. Exp. Ther.,1984

4. Imidazoline Receptor System: The Past, the Present, and the Future;Bousquet;Pharmacol. Rev.,2020

5. The Imidazoline Site Involved in Control of Insulin Secretion: Characteristics that Distinguish it from I1- and I2-Sites;Chan;Br. J. Pharmacol.,1994

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3