A New Strategy for Multitarget Drug Discovery/Repositioning Through the Identification of Similar 3D Amino Acid Patterns Among Proteins Structures: The Case of Tafluprost and its Effects on Cardiac Ion Channels

Author:

Valdés-Jiménez Alejandro,Jiménez-González Daniel,Kiper Aytug K.,Rinné Susanne,Decher Niels,González Wendy,Reyes-Parada Miguel,Núñez-Vivanco Gabriel

Abstract

The identification of similar three-dimensional (3D) amino acid patterns among different proteins might be helpful to explain the polypharmacological profile of many currently used drugs. Also, it would be a reasonable first step for the design of novel multitarget compounds. Most of the current computational tools employed for this aim are limited to the comparisons among known binding sites, and do not consider several additional important 3D patterns such as allosteric sites or other conserved motifs. In the present work, we introduce Geomfinder2.0, which is a new and improved version of our previously described algorithm for the deep exploration and discovery of similar and druggable 3D patterns. As compared with the original version, substantial improvements that have been incorporated to our software allow: (i) to compare quaternary structures, (ii) to deal with a list of pairs of structures, (iii) to know how druggable is the zone where similar 3D patterns are detected and (iv) to significantly reduce the execution time. Thus, the new algorithm achieves up to 353x speedup as compared to the previous sequential version, allowing the exploration of a significant number of quaternary structures in a reasonable time. In order to illustrate the potential of the updated Geomfinder version, we show a case of use in which similar 3D patterns were detected in the cardiac ions channels NaV1.5 and TASK-1. These channels are quite different in terms of structure, sequence and function and both have been regarded as important targets for drugs aimed at treating atrial fibrillation. Finally, we describe the in vitro effects of tafluprost (a drug currently used to treat glaucoma, which was identified as a novel putative ligand of NaV1.5 and TASK-1) upon both ion channels’ activity and discuss its possible repositioning as a novel antiarrhythmic drug.

Funder

Fondo Nacional de Desarrollo Científico y Tecnológico

Generalitat de Catalunya

Ministerio de Economía, Industria y Competitividad, Gobierno de España

Departamento de Investigaciones Científicas y Tecnológicas, Universidad de Santiago de Chile

Comisión Nacional de Investigación Científica y Tecnológica

Publisher

Frontiers Media SA

Subject

Pharmacology (medical),Pharmacology

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3