NetRank Recovers Known Cancer Hallmark Genes as Universal Biomarker Signature for Cancer Outcome Prediction

Author:

Al-Fatlawi Ali,Afrin Nazia,Ozen Cigdem,Malekian Negin,Schroeder Michael

Abstract

Gene expression can serve as a powerful predictor for disease progression and other phenotypes. Consequently, microarrays, which capture gene expression genome-wide, have been used widely over the past two decades to derive biomarker signatures for tasks such as cancer grading, prognosticating the formation of metastases, survival, and others. Each of these signatures was selected and optimized for a very specific phenotype, tissue type, and experimental set-up. While all of these differences may naturally contribute to very heterogeneous and different biomarker signatures, all cancers share characteristics regardless of particular cell types or tissue as summarized in the hallmarks of cancer. These commonalities could give rise to biomarker signatures, which perform well across different phenotypes, cell and tissue types. Here, we explore this possibility by employing a network-based approach for pan-cancer biomarker discovery. We implement a random surfer model, which integrates interaction, expression, and phenotypic information to rank genes by their suitability for outcome prediction. To evaluate our approach, we assembled 105 high-quality microarray datasets sampled from around 13,000 patients and covering 13 cancer types. We applied our approach (NetRank) to each dataset and aggregated individual signatures into one compact signature of 50 genes. This signature stands out for two reasons. First, in contrast to other signatures of the 105 datasets, it is performant across nearly all cancer types and phenotypes. Second, It is interpretable, as the majority of genes are linked to the hallmarks of cancer in general and proliferation specifically. Many of the identified genes are cancer drivers with a known mutation burden linked to cancer. Overall, our work demonstrates the power of network-based approaches to compose robust, compact, and universal biomarker signatures for cancer outcome prediction.

Funder

Technische Universität Dresden

Publisher

Frontiers Media SA

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3