Kinematic analysis of an unrestrained passenger in an autonomous vehicle during emergency braking

Author:

Santos-Cuadros Silvia,Page del Pozo Álvaro,Álvarez-Caldas Carolina,San Román García José Luis

Abstract

Analyzing human body movement is a critical aspect of biomechanical studies in road safety. While most studies have traditionally focused on assessing the head-neck system due to the restraint provided by seat belts, it is essential to examine the entire pelvis-thorax-head kinematic chain when these body regions are free to move. The absence of restraint systems is prevalent in public transport and is also being considered for future integration into autonomous vehicles operating at low speeds. This article presents an experimental study examining the movement of the pelvis, thorax and head of 18 passengers seated without seat belts during emergency braking in an autonomous bus. The movement was recorded using a video analysis system capturing 100 frames per second. Reflective markers were placed on the knee, pelvis, lumbar region, thorax, neck and head, enabling precise measurement of the movement of each body segment and the joints of the lumbar and cervical spine. Various kinematic variables, including angles, displacements, angular velocities and accelerations, were measured. The results delineate distinct phases of body movement during braking and elucidate the coordination and sequentiality of pelvis, thorax and head rotation. Additionally, the study reveals correlations between pelvic rotation, lumbar flexion, and vertical trunk movement, shedding light on their potential impact on neck compression. Notably, it is observed that the elevation of the C7 vertebra is more closely linked to pelvic tilt than lumbar flexion. Furthermore, the study identifies that the maximum angular acceleration of the head and the maximum tangential force occur during the trunk’s rebound against the seatback once the vehicle comes to a complete stop. However, these forces are found to be insufficient to cause neck injury. While this study serves as a preliminary investigation, its findings underscore the need to incorporate complete trunk kinematics, particularly of the pelvis, into braking and impact studies, rather than solely focusing on the head-neck system, as is common in most research endeavors.

Funder

Comunidad de Madrid

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3