A facile and efficient synthesis approach of salidroside esters by whole-cell biocatalysts in organic solvents

Author:

Yang Rongling,Wang Yu,Zhao Xiangjie,Tong Zheng,Zhu Qianlin,He Xiaoxi,Wang Zhaoyu,Luo Hongzhen,Fang Fang

Abstract

Salidroside, the main bioactive compound isolated from the plant source of Rhodiola rosea L, possesses broad-spectrum pharmacological activities, but suffers from the low cell membranes permeability and alimentary absorption due to its high polarity. Therefore, a whole-cell catalytic strategy for the synthesis of salidroside esters was explored to improve its lipophilicity. The results showed that Aspergillus oryzae demonstrated the highest biocatalytic activity among the microbial strains tested. For the synthesis of salidroside caprylate, the optimum conditions of reaction medium, Aspergillus oryzae amount, molar ratio of vinyl caprylate to salidroside and reaction temperature were acetone, 30 mg/ml, 10°C and 40°C, respectively. Under these conditions, the initial reaction rate was 15.36 mM/h, and substrate conversion and regioselectivity all reached 99%. Moreover, the results indicated that although various 6′-monoesters derivatives of salidroside were exclusively obtained with excellent conversions (96%–99%), the reaction rate varied greatly with different chain-length acyl donors. This study details an efficient and cost-effective biocatalytic approach for the synthesis of salidroside esters by using Aspergillus oryzae as a catalyst for the first time. Considering the whole cell catalytic efficiency and operational stability, this strategy may provide a new opportunity to develop green industrial processes production for ester derivatives of salidroside and its analogues.

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3