An injectable hyperthermic nanofiber mesh with switchable drug release to stimulate chemotherapy potency

Author:

Chen Lili,Fujisawa Nanami,Takanohashi Masato,Ebara Mitsuhiro

Abstract

We developed a smart nanofiber mesh (SNM) with anticancer abilities as well as injectability and fast recovery from irregular to non-compressible shapes. The mesh can be injected at the tumor site to modulate and control anticancer effects by loading the chemotherapeutic drug, paclitaxel (PTX), as well as magnetic nanoparticles (MNPs). The storage modulus of the mesh decreases when applied with a certain shear strain, and the mesh can pass through a 14-gauge needle. Moreover, the fibrous morphology is maintained even after injection. In heat-generation measurements, the mesh achieved an effective temperature of mild hyperthermia (41–43°C) within 5 min of exposure to alternating magnetic field (AMF) irradiation. An electrospinning method was employed to fabricate the mesh using a copolymer of N-isopropylacrylamide (NIPAAm) and N-hydroxyethyl acrylamide (HMAAm), whose phase transition temperature was adjusted to a mildly hyperthermic temperature range. Pplyvinyl alcohol (PVA) was also incorporated to add shear-thinning property to the interactions between polymer chains derived from hydrogen bonding, The “on-off” switchable release of PTX from the mesh was detected by the drug release test. Approximately 73% of loaded PTX was released from the mesh after eight cycles, whereas only a tiny amount of PTX was released during the cooling phase. Furthermore, hyperthermia combined with chemotherapy after exposure to an AMF showed significantly reduced cancer cell survival compared to the control group. Subsequent investigations have proven that a new injectable local hyperthermia chemotherapy platform could be developed for cancer treatment using this SNM.

Funder

Japan Society for the Promotion of Science

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

Reference41 articles.

1. Overview of nano-fiber mats fabrication via electrospinning and morphology analysis;Ahmadian;Textiles,2021

2. Treating cancer with heat: hyperthermia as promising strategy to enhance apoptosis;Ahmed;J. Pak. Med. Assoc.,2012

3. Systemically delivered magnetic hyperthermia for prostate cancer treatment;Albarqi;Pharmaceutics,2020

4. An overview of clinical and commercial impact of drug delivery systems;Anselmo;J. Control. Release,2014

5. A smart hyperthermia nanofiber-platform-enabled sustained release of doxorubicin and 17AAG for synergistic cancer therapy;Chen;Int. J. Mol. Sci.,2021

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3