Interactions Between 2D Materials and Living Matter: A Review on Graphene and Hexagonal Boron Nitride Coatings

Author:

Santos João,Moschetta Matteo,Rodrigues João,Alpuim Pedro,Capasso Andrea

Abstract

Two-dimensional material (2DM) coatings exhibit complex and controversial interactions with biological matter, having shown in different contexts to induce bacterial cell death and contribute to mammalian cell growth and proliferation in vitro and tissue differentiation in vivo. Although several reports indicate that the morphologic and electronic properties of the coating, as well as its surface features (e.g., crystallinity, wettability, and chemistry), play a key role in the biological interaction, these kinds of interactions have not been fully understood yet. In this review, we report and classify the cellular interaction mechanisms observed in graphene and hexagonal boron nitride (hBN) coatings. Graphene and hBN were chosen as study materials to gauge the effect of two atomic-thick coatings with analogous lattice structure yet dissimilar electrical properties upon contact with living matter, allowing to discern among the observed effects and link them to specific material properties. In our analysis, we also considered the influence of crystallinity and surface roughness, detailing the mechanisms of interaction that make specific coatings of these 2DMs either hostile toward bacterial cells or innocuous for mammalian cells. In doing this, we discriminate among the material and surface properties, which are often strictly connected to the 2DM production technique, coating deposition and post-processing method. Building on this knowledge, the selection of 2DM coatings based on their specific characteristics will allow to engineer desired functionalities and devices. Antibacterial coatings to prevent biofouling, biocompatible platforms suitable for biomedical applications (e.g., wound healing, tissue repairing and regeneration, and novel biosensing devices) could be realized in the next future. Overall, a clear understanding on how the 2DM coating’s properties may modulate a specific bacterial or cellular response is crucial for any future innovation in the field.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3