Development of a tag-free plant-made interferon gamma production system with improved therapeutic efficacy against viruses

Author:

Jiang Min-Chao,Hsu Wei-Li,Tseng Ching-Yu,Lin Na-Sheng,Hsu Yau-Heiu,Hu Chung-Chi

Abstract

Plants offer a promising platform for cost-effective production of biologically active therapeutic glycoproteins. In previous studies, we have developed a plant expression system based on Bamboo mosaic virus (BaMV) by incorporating secretory signals and an affinity tag, which resulted in notably enhanced yields of soluble and secreted fusion glycoproteins (FGs) in Nicotiana benthamiana. However, the presence of fusion tags on recombinant glycoproteins is undesirable for biomedical applications. This study aimed to develop a refined expression system that can efficiently produce tag-free glycoproteins in plants, with enhanced efficacy of mature interferon gamma (mIFNγ) against viruses. To accommodate the specific requirement of different target proteins, three enzymatically or chemically cleavable linkers were provided in this renovated BaMV-based expression system. We demonstrated that Tobacco etch virus (TEV) protease could process the specific cleavage site (LTEV) of the fusion protein, designated as SSExtHis(SP)10LTEV-mIFNγ, with optimal efficiency under biocompatible conditions to generate tag-free mIFNγ glycoproteins. The TEV protease and secretory-affinity tag could be effectively removed from the target mIFNγ glycoproteins through Ni2+-NTA chromatography. In addition, the result of an antiviral assay showed that the tag-free mIFNγ glycoproteins exhibited enhanced biological properties against Sindbis virus, with comparable antiviral activity of the commercialized HEK293-expressed hIFNγ. Thus, the improved BaMV-based expression system developed in this study may provide an alternative strategy for producing tag-free therapeutic glycoproteins intended for biomedical applications.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3