Pursuit and Evasion Strategy of a Differential Game Based on Deep Reinforcement Learning

Author:

Xu Can,Zhang Yin,Wang Weigang,Dong Ligang

Abstract

Since the emergence of deep neural network (DNN), it has achieved excellent performance in various research areas. As the combination of DNN and reinforcement learning, deep reinforcement learning (DRL) becomes a new paradigm for solving differential game problems. In this study, we build up a reinforcement learning environment and apply relevant DRL methods to a specific bio-inspired differential game problem: the dog sheep game. The dog sheep game environment is set on a circle where the dog chases down the sheep attempting to escape. According to some presuppositions, we are able to acquire the kinematic pursuit and evasion strategy. Next, this study implements the value-based deep Q network (DQN) model and the deep deterministic policy gradient (DDPG) model to the dog sheep game, attempting to endow the sheep the ability to escape successfully. To enhance the performance of the DQN model, this study brought up the reward mechanism with a time-out strategy and the game environment with an attenuation mechanism of the steering angle of sheep. These modifications effectively increase the probability of escape for the sheep. Furthermore, the DDPG model is adopted due to its continuous action space. Results show the modifications of the DQN model effectively increase the escape probabilities to the same level as the DDPG model. When it comes to the learning ability under various environment difficulties, the refined DQN and the DDPG models have bigger performance enhancement over the naive evasion model in harsh environments than in loose environments.

Funder

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Biomedical Engineering,Histology,Bioengineering,Biotechnology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3