Superior performance of biocomposite nanoparticles PLGA-RES in protecting oocytes against vitrification stimuli

Author:

Hai Guiping,Bai Jiachen,Liu Yucheng,Li Jun,Liu Aiju,Wang Jingjing,Liu Qian,Liu Weijun,Wan Pengcheng,Fu Xiangwei

Abstract

Irreversible cryogenic damage caused by oocyte vitrification limits its widespread use in female fertility preservation. In recent years, nanoparticles (NPs) have gained great attention as potential alternatives in protecting oocytes against cryoinjuries. In this paper, a novel composite nanoparticle, poly (lactic-co-glycolic acid)-resveratrol (PLGA-RES) was designed to improve the biocompatibility and sustained release properties by encapsulating natural antioxidant RES into PLGA NPs. Firstly, biotoxicity and oxidation resistance of PLGA-RES were determined, and the results showed that PLGA-RES had nontoxic effect on oocyte survival during in vitro maturation (IVM) (97.08% ± 0.24% vs. 98.89% ± 1.11%, p > 0.05). Notably, PLGA-RES even increased maturation (65.10% ± 4.11% vs. 52.85% ± 2.87%, p < 0.05) and blastocyst rate (56.13% ± 1.36% vs. 40.91% ± 5.85%, p < 0.05). Moreover, the reduced reactive oxygen species (ROS) level (13.49 ± 2.30 vs. 34.07 ± 3.30, p < 0.01), increased glutathione (GSH) (44.13 ± 1.57 vs. 37.62 ± 1.79, p < 0.01) and elevated mitochondrial membrane potential (MMP) levels (43.10 ± 1.81 vs. 28.52 ± 1.25, p < 0.01) were observed in oocytes treated with PLGA-RES when compared with that of the control group. Subsequently, the role of PLGA-RES played in oocytes during vitrification was systematically evaluated. The results showed that the addition of PLGA-RES during vitrification and thawing significantly improved the survival rate (80.42% ± 1.97% vs. 75.37% ± 1.3%, p < 0.05). Meanwhile, increased GSH (15.09 ± 0.86 vs. 14.51 ± 0.78, p < 0.01) and mitochondrial membrane potential (22.56 ± 3.15 vs. 6.79 ± 0.60, p < 0.01), decreased reactive oxygen species levels (52.11 ± 2.95 vs. 75.41 ± 7.23, p < 0.05) and reduced mitochondrial abnormality distribution rate (25.00% ± 0.29% vs. 33.33% ± 1.15%, p < 0.01) were assessed in vitrified MII oocytes treated with PLGA-RES. Furthermore, transcriptomic analyses demonstrated that PLGA-RES participated in endocytosis and PI3K/AKT/mTOR pathway regulation, which was verified by the rescued expression of ARRB2 and ULK3 protein after PLGA-RES treatment. In conclusion, PLGA-RES exhibited potent antioxidant activity, and could be used as an efficacious strategy to improve the quality of vitrified oocytes.

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3