Comparing detection accuracy of mountain chickadee (Poecile gambeli) song by two deep-learning algorithms

Author:

Haley Sofia M.,Madhusudhana Shyam,Branch Carrie L.

Abstract

The use of autonomous recording units (ARUs) has become an increasingly popular and powerful method of data collection for biological monitoring in recent years. However, the large-scale recordings collected using these devices are often nearly impossible for human analysts to parse through, as they require copious amounts of time and resources. Automated recognition techniques have allowed for quick and efficient analysis of these recordings, and machine learning (ML) approaches, such as deep learning, have greatly improved recognition robustness and accuracy. We evaluated the performance of two deep-learning algorithms: 1. our own custom convolutional neural network (CNN) detector (specialist approach) and 2. BirdNET, a publicly available detector capable of identifying over 6,000 bird species (generalist approach). We used audio recordings of mountain chickadees (Poecile gambeli) collected from ARUs and directional microphones in the field as our test stimulus set, with our custom detector trained to identify mountain chickadee songs. Using confidence thresholds of 0.6 for both detectors, we found that our custom CNN detector yielded higher detection compared to BirdNET. Given both ML approaches are significantly faster than a human detector and the custom CNN detector is highly accurate, we hope that our findings encourage bioacoustics practitioners to develop custom solutions for targeted species identification, especially given the availability of open-source toolboxes such as Koogu.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3