A 3D pseudo-continuous arterial spin labeling study of altered cerebral blood flow correlation networks in mild cognitive impairment and Alzheimer's disease

Author:

Li Meng,Zhu Tianjia,Kang Yan,Qi Shouliang

Abstract

ObjectiveTo investigate the abnormalities of the three-dimensional pseudo-continuous arterial spin labeling (3D PCASL) based cerebral blood flow (CBF) correlation networks in mild cognitive impairment (MCI) and Alzheimer's disease (AD).Methods3D PCASL images of 53 cognitive normal (CN) subjects, 43 subjects with MCI, and 30 subjects with AD were acquired from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Whole-brain CBF maps were calculated using PCASL and proton density-weighted images (PDWI). The 246 regional CBF values, including the cortex and subcortex, were obtained after registering the Brainnetome Atlas to the individual CBF maps. The Pearson correlation coefficient between every two regions across subjects was calculated to construct the CBF correlation network. Then the topologies of CBF networks with regard to global properties (global network efficiency, clustering coefficient, characteristic path length, and small-world properties), hub regions, nodal properties (betweenness centrality, BC), and connections were compared among CN, MCI, and AD. Significant changes in the global and nodal properties were observed in the permutation tests, and connections with significant differences survived after the z-statistic and false discovery rate (FDR) correction.ResultsThe CBF correlation networks of CN, MCI, and AD all showed small-world properties. Compared with CN, global efficiency decreased significantly in AD. Significant differences in nodal properties and a loss of hub regions are noted in the middle temporal lobe in both MCI and AD. In the frontal lobe, BC is reduced in MCI while it is increased in the occipital lobe in AD. The identified altered hub regions with significant differences in MCI and AD were mainly distributed in the hippocampus and entorhinal cortex. In addition, disrupted hub regions in AD with significantly decreased connections were mainly found in the precuneus/posterior cingulate cortex (PCC) and hippocampus-cortical cortex.ConclusionsNoninvasive 3D PCASL-based CBF correlation networks are capable of showing changes in topological organization in subjects with MCI and AD, and the observed disruption in the topological organization may underlie cognitive decline in MCI and AD.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3