Long-term environmental enrichment is associated with better fornix microstructure in older adults

Author:

Klimecki Olga M.,Liebscher Maxie,Gaubert Malo,Hayek Dayana,Zarucha Alexis,Dyrba Martin,Bartels Claudia,Buerger Katharina,Butryn Michaela,Dechent Peter,Dobisch Laura,Ewers Michael,Fliessbach Klaus,Freiesleben Silka Dawn,Glanz Wenzel,Hetzer Stefan,Janowitz Daniel,Kilimann Ingo,Kleineidam Luca,Laske Christoph,Maier Franziska,Munk Matthias H.,Perneczky Robert,Peters Oliver,Priller Josef,Rauchmann Boris-Stephan,Roy Nina,Scheffler Klaus,Schneider Anja,Spruth Eike Jakob,Spottke Annika,Teipel Stefan J.,Wiltfang Jens,Wolfsgruber Steffen,Yakupov Renat,Düzel Emrah,Jessen Frank,Wagner Michael,Roeske Sandra,Wirth Miranka,

Abstract

BackgroundSustained environmental enrichment (EE) through a variety of leisure activities may decrease the risk of developing Alzheimer’s disease. This cross-sectional cohort study investigated the association between long-term EE in young adulthood through middle life and microstructure of fiber tracts associated with the memory system in older adults.MethodsN = 201 cognitively unimpaired participants (≥ 60 years of age) from the DZNE-Longitudinal Cognitive Impairment and Dementia Study (DELCODE) baseline cohort were included. Two groups of participants with higher (n = 104) or lower (n = 97) long-term EE were identified, using the self-reported frequency of diverse physical, intellectual, and social leisure activities between the ages 13 to 65. White matter (WM) microstructure was measured by fractional anisotropy (FA) and mean diffusivity (MD) in the fornix, uncinate fasciculus, and parahippocampal cingulum using diffusion tensor imaging. Long-term EE groups (lower/higher) were compared with adjustment for potential confounders, such as education, crystallized intelligence, and socio-economic status.ResultsReported participation in higher long-term EE was associated with greater fornix microstructure, as indicated by higher FA (standardized β = 0.117, p = 0.033) and lower MD (β = −0.147, p = 0.015). Greater fornix microstructure was indirectly associated (FA: unstandardized B = 0.619, p = 0.038; MD: B = −0.035, p = 0.026) with better memory function through higher long-term EE. No significant effects were found for the other WM tracts.ConclusionOur findings suggest that sustained participation in a greater variety of leisure activities relates to preserved WM microstructure in the memory system in older adults. This could be facilitated by the multimodal stimulation associated with the engagement in a physically, intellectually, and socially enriched lifestyle. Longitudinal studies will be needed to support this assumption.

Publisher

Frontiers Media SA

Subject

Cognitive Neuroscience,Aging

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3