EXOSpy: A python package to investigate the terrestrial exosphere and its FUV emission

Author:

Cucho-Padin Gonzalo,Bhattacharyya Dolon,Sibeck David G.,Connor Hyunju,Youngblood Allison,Ardila David

Abstract

The exosphere is the uppermost layer of the terrestrial atmosphere, mainly composed of atomic hydrogen (H) that resonantly scatters solar far-ultraviolet (FUV) photons at 121.56 nm, also referred to as Lyman-Alpha (Ly-α) emission. Analysis of this emission has been used to determine the global, three-dimensional, and time-dependent exospheric H density structure, which is essential to assess the permanent escape of H to space as well as to determine their role in governing the transient response of terrestrial plasma environment to space weather. Thus, Ly-α emission and its by-product, the H density, are highly desirable to the magnetospheric community. On the other hand, this emission can also be regarded as a significant source of contamination during studies of FUV targets such as O/B-type stars, planetary and exoplanetary atmospheres, and the circumgalactic medium, especially when observations are acquired from Earth-orbiting instruments. In this case, accurate specification of exospheric Ly-α photon flux and its subsequent removal is required by the planetary and astrophysics community studying solar/extra-solar system objects. This work introduces EXOSpy, an open-source python-based package that provides several models of terrestrial exospheric H density and calculates exospheric Ly-α emission with a high potential to contribute to investigations in both communities. We present several examples to demonstrate how EXOSpy can be used to (i) validate current and new exospheric models based on actual Ly-α radiance data, (ii) estimate exospheric contamination for a given instrument’s line-of-sight and spatial location, and (iii) provide support for new space-based FUV instrument design.

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3