To what degree does a high-energy aurora destroy F-region irregularities?

Author:

Ivarsen Magnus F.,St-Maurice Jean-Pierre,Jin Yaqi,Park Jaeheung,Buschmann Lisa M.,Clausen Lasse B. N.

Abstract

Using two separate databases of in situ ionospheric observations, we present case studies and perform a statistical investigation of the link between energetic precipitating particles during the polar night and high-latitude F-region steepening density spectra. Our study covers approximately 3 years of data obtained near the peak of the 24th solar cycle from four Defense Meteorological Satellite Program satellites and from the European Space Agency’s Swarm satellites. Focusing on the midnight sector of the auroral oval, we found that there is a near-perfect co-location between high-energy precipitating particles and occurrence of dissipating F-region plasma density spectra. This is because the precipitating energy flux strongly enhances the E-region Pedersen conductivity, allowing fast and efficient dissipation of kilometer-scale F-region irregularities. Spectra that are possibly non-dissipating are in turn co-located with the distribution of soft electron precipitation. Together, dissipating and non-dissipating density spectra constitute two distinct irregularity regimes. Surprisingly, we also found that efficient dissipation notwithstanding, high-energy precipitating particles cause a net increase in the F-region irregularity power, suggesting that growth and dissipation are interlinked and that some of the observed F-region irregularities may conceivably be generated in the E region. This work is expected to be beneficial for the classification of F-region in situ density spectra and suggests that such density spectra can be used to infer the presence of high-energy or low-energy precipitations based on spectral properties.

Funder

Norges Forskningsråd

Canadian Space Agency

Publisher

Frontiers Media SA

Reference46 articles.

1. A new magnetic coordinate system for conjugate studies at high latitudes;Baker;J. Geophys. Res. Space Phys.,1989

2. Quiescent discrete auroral arcs: a review of magnetospheric generator mechanisms;Borovsky;Space Sci. Rev.,2019

3. Transport processes in a plasma;Braginskii;Rev. Plasma Phys.,1965

4. The global variation of low ionosphere under action of energetic electron precipitation;Chen;J. Geophys. Res. Space Phys.,2023

5. Magnetosphere-ionosphere interactions: a tutorial review;Cowley;Wash. D.C. Am. Geophys. Union Geophys. Monogr. Ser.,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3