Research on identification of nucleus-shaped anomaly regions in space electric field

Author:

Li Xing-Su,Li Zhong,Huang Jian-Ping,Han Ying,Huo Yu-Meng,Song Jun-Jie,Hao Bo

Abstract

The presence of nucleus-shaped anomalous regions in the power spectrum image of the electric field VLF frequency band has been discovered in previous studies. To detect and analyze these nucleus-shaped abnormal areas and improve the recognition rate of nucleus-shaped abnormal areas, this paper proposes a new nucleus-shaped abnormal area detection model ODM_Unet (Omni-dimensional Dynamic Mobile U-net) based on U-net network. Firstly, the power spectrum image data used for training is created and labeled to form a dataset of nucleus-shaped anomalous regions; Secondly, the ODConv (Omni-dimensional Dynamic Convolution) module with embedded attention mechanism was introduced to improve the encoder, extracting nucleus-shaped anomaly region information from four dimensions and focusing on the features of different input data; An SDI (Semantics and Detail Infusion) module is introduced between the encoder and decoder to solve the problem of detail semantic loss in high-level images caused by the reduction of downsampling image size; In the decoder stage, the SCSE (Spatial and Channel Squeeze-and-Excitation) attention module is introduced to more finely adjust the feature maps output through the SDI module. The experimental results show that compared with the current popular semantic segmentation algorithms, the ODM_Unet model has the best detection performance in nucleus-shaped anomaly areas. Using this model to detect data from November 2021 to October 2022, it was found that the frequency of nucleus-shaped anomaly areas is mostly between 0 and 12.5KHz, with geographic spatial distribution ranging from 40° to 70° south and north latitudes, and magnetic latitude spatial distribution ranging from 58° to 80° south and north latitudes. This method has reference significance for detecting other types of spatial electromagnetic field disturbances.

Publisher

Frontiers Media SA

Reference45 articles.

1. Horizontal flip-invariant sketch recognition via local patch hashing;Bozas,2015

2. Albumentations: fast and flexible image augmentations;Buslaev;Information,2020

3. Non-seismic induced electromagnetic waves in the near earth space;Cao;Earthquake,2009

4. Linknet: exploiting encoder representations for efficient semantic segmentation;Chaurasia,2017

5. Rethinking atrous convolution for semantic image segmentation Chen L.-C. Papandreou G. Schroff F. Adam H. 2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3