Seismic Cartography of White-Dwarf Interiors From the Toulouse-Montréal Optimal-Design Approach

Author:

Giammichele Noemi,Charpinet Stéphane,Brassard Pierre

Abstract

Probing internal properties of white-dwarf stars has been amongst the earliest objectives of asteroseismology, following the first discovery in the late 1960s of non-radial pulsations in these evolved compact stars. It was swiftly recognized that white-dwarf pulsators could offer new opportunities to unravel their inner structure and dynamics from the observed low-degree, low-order gravity (g-)modes. From these early days on, many approaches have been attempted to fully exploit this potential, with various levels of success. Here, we review the most recent efforts from our group to perform a complete seismic cartography of white-dwarf interiors. Our approach involves new models incorporating flexible internal profiles for the main chemical constituents (H, He, C, and O) that are optimized, along with other fundamental parameters (Teff and log  g), to determine the stellar structure that best reproduces the observed period spectrum of a given star. The method is meant to reduce as much as possible solution dependency relative to stellar evolution uncertainties. The outcome is a full seismic model of the pulsating white-dwarf star under consideration, including its internal core and envelope chemical stratification. Searching for seismic solutions that do not depend on stellar evolution calculations is a key requirement of this strategy. Late stages of evolution that ultimately shape the inner structure of white dwarf stars are known to rely on still uncertain processes. One of our hopes is to be able to test these processes, therefore requiring that seismic models do not incorporate strong preconceived expectations from evolutionary models. We present and discuss results obtained so far from the application of this method to a handful of DB and DA pulsators. In all cases, significant qualitative improvements of the seismic solutions is obtained, providing as an outcome strong quantitative constraints on the core chemical structure of these stars. In particular, we consistently find that the homogeneous C/O mixed core, inherited from the core helium-burning phase, is 40% larger (in mass) and 15% richer in oxygen (in mass fraction) than expected from standard evolution calculations. Such results constitute precious guidelines for modeling late stages of stellar evolution and better understanding their constitutive physics. As an illustration of this, we show that the central oxygen mass fraction measured by seismology can indeed be reproduced when helium-burning cores experience the so-called breathing pulses. The latter are usually suppressed in standard evolution calculations, as the result of an old debate whether such events are real or numerical artefacts. In other words, our seismic determination of the central amount of oxygen in white dwarfs provides evidence that breathing pulses occurred in the core of their progenitors and should not be dismissed in models after all.

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

Reference102 articles.

1. A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures;Akima;J. ACM,1970

2. New Chemical Profiles for the Asteroseismology of ZZ Ceti Stars;Althaus;Astrophysical J.,2010

3. A Compilation of Charged-Particle Induced Thermonuclear Reaction Rates;Angulo;Nucl. Phys. A,1999

4. On the Spectral Evolution of Hot White Dwarf Stars. II. Time-dependent Simulations of Element Transport in Evolving White Dwarfs with STELUM;Bédard;Astrophysical J.,2021

5. Optical and Ultraviolet Analyses of ZZ Ceti Stars and Study of the Atmospheric Convective Efficiency in DA White Dwarfs;Bergeron;Astrophysical J.,1995

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3