Ionize Hard: Interstellar PO+ Detection

Author:

Rivilla Víctor M.,García De La Concepción Juan,Jiménez-Serra Izaskun,Martín-Pintado Jesús,Colzi Laura,Tercero Belén,Megías Andrés,López-Gallifa Álvaro,Martínez-Henares Antonio,Massalkhi Sara,Martín Sergio,Zeng Shaoshan,De Vicente Pablo,Rico-Villas Fernando,Requena-Torres Miguel A.,Cosentino Giuliana

Abstract

We report the first detection of the phosphorus monoxide ion (PO+) in the interstellar medium. Our unbiased and very sensitive spectral survey toward the G+0.693–0.027 molecular cloud covers four different rotational transitions of this molecule, two of which (J = 1–0 and J = 2–1) appear free of contamination from other species. The fit performed, assuming local thermodynamic equilibrium conditions, yields a column density of N=(6.0 ± 0.7) × 1011 cm−2. The resulting molecular abundance with respect to molecular hydrogen is 4.5 × 10–12. The column density of PO+ normalized by the cosmic abundance of P is larger than those of NO+ and SO+, normalized by N and S, by factors of 3.6 and 2.3, respectively. The N(PO+)/N(PO) ratio is 0.12 ± 0.03, more than one order of magnitude higher than that of N(SO+)/N(SO) and N(NO+)/N(NO). These results indicate that P is more efficiently ionized than N and S in the ISM. We have performed new chemical models that confirm that the PO+ abundance is strongly enhanced in shocked regions with high values of cosmic-ray ionization rates (10–15 − 10–14 s−1), as occurring in the G+0.693–0.027 molecular cloud. The shocks sputter the interstellar icy grain mantles, releasing into the gas phase most of their P content, mainly in the form of PH3, which is converted into atomic P, and then ionized efficiently by cosmic rays, forming P+. Further reactions with O2 and OH produces PO+. The cosmic-ray ionization of PO might also contribute significantly, which would explain the high N(PO+)/N(PO) ratio observed. The relatively high gas-phase abundance of PO+ with respect to other P-bearing species stresses the relevance of this species in the interstellar chemistry of P.

Funder

Comunidad de Madrid

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3