Structural influences on groundwater circulation in the Makgadikgadi salt pans of Botswana? Implications for martian playa environments

Author:

Schmidt G.,Luzzi E.,Franchi F.,Selepeng A. T.,Hlabano K.,Salvini F.

Abstract

Across the surface of Mars, evidence of past lacustrine and evaporitic environments has been found within basins and craters, where often layered sedimentary deposits and hydrated minerals are observed. However, the intensity, duration, and precise phases of aqueous processes during their deposition remain unresolved mostly for our inability to model subsurface structures. Although several geological processes and locations on Earth have been previously proposed as examples to describe these deposits on Mars, we lack a strong visualization of what water activity might have looked like during evaporitic stages within basins and craters. Here we propose to investigate the shallow subsurface of the Makgadikgadi salt pans of Botswana as a potential analog for understanding groundwater upwelling on Mars. The pans are found within the Makgadikgadi Basin, a depression located at the southwestern end of a northeast-southwest set of graben linked with the East African Rift. The Makgadikgadi Pans are evaporitic environment rich in hydrated minerals and groundwater activity. The purpose of this work is to identify buried faults and areas of relative water saturation within the lacustrine sediment of the Makgadikgadi Basin by means of electrical resistivity surveys. This work represents the first electrical resistivity survey of the basin floor which provides a precursory investigation of the relationship between groundwater, faults, basement depth, and the lacustrine sediments. We present four electrical survey lines from different locations in the pans which reveal distinct sedimentary units. Several faults are inferred from the vertical displacement of these units and accompanying low resistivity where displacement is observed. These results provide a framework for visualizing the sedimentary sequences of infilled basins and craters on Mars, which can broaden the ongoing discussion of hydrogeological processes that were active in the planet’s past. We propose Meridiani Planum, as well as Oyama and Becquerel crater of Arabia Terra as locations to establish this framework. Since such processes are still ongoing in the Makgadikgadi Basin, imaging the subsurface of the pans helps explain the formation of layered and salty deposits on the surface of Mars, how they may have interacted with flowing water, and whether they might have hosted life.

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

Reference123 articles.

1. A deep groundwater origin for recurring slope lineae on Mars;Abotalib;Nat. Geosci.,2019

2. Evidence for multiple diagenetic episodes in ancient fluvial‐lacustrine sedimentary rocks in Gale crater, Mars;Achilles;J. Geophys. Res. Planets,2020

3. USGS-Astrogeology/ISIS3: ISIS3.10.1 public release zenodo Adoram-KershnerL. BerryK. LeeK. LauraJ. MapelJ. PaquetteA. 2020

4. A case for ancient springs in Arabia Terra, Mars;Allen;Astrobiology,2008

5. The paleolacustrine evolution of Juventae Chasma and Maja Valles and its implications for the formation of interior layered deposits on Mars;Al-Samir;Icarus,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3