Evidence of Kelvin-Helmholtz and tearing mode instabilities at the magnetopause during space weather events

Author:

Biasiotti Lorenzo,Ivanovski Stavro,Calderone Lorenzo,Jerse Giovanna,Laurenza Monica,Del Moro Dario,Longo Francesco,Plainaki Christina,Marcucci Maria Federica,Milillo Anna,Molinaro Marco,Feruglio Chiara

Abstract

Introduction: Kelvin-Helmholtz (KH) and tearing mode (TM) instabilities are one of the most important mechanisms of solar wind energy, momentum and plasma transport within the magnetosphere.Methods: To investigate the conditions under which KHTM instabilities occur in the Earth environment it is fundamental to combine simultaneous multipoint in situ measurements and MHD simulations. We analyzed data from the THEMIS and Cluster spacecraft considering two Space Weather (SWE) events starting with an M2.0 flare event (hereafter Case-1) that occurred on 21 June 2015 and the most-intensive flare (X9.3) of solar cycle 24 that occurred on 6 September 2017 (hereafter Case-2).Results: Our analysis utilized a 2D MHD model for incompressible and viscous flow. The results from Case-1 indicate the presence of KH and TM instabilities, suggesting existence of observed low-amplitude oscillations at the nose of the magnetopause. However, the MHD simulations for Case-2 did not show any evidence of KH vortices, but did reveal the presence of “magnetic island” structures during a low-shear condition. The reconnection rate derived from the observations is compared with the computed one in the presence of developed instabilities inside the Earth’s magnetopause.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3