Photometric Redshifts With Machine Learning, Lights and Shadows on a Complex Data Science Use Case

Author:

Brescia Massimo,Cavuoti Stefano,Razim Oleksandra,Amaro Valeria,Riccio Giuseppe,Longo Giuseppe

Abstract

The importance of the current role of data-driven science is constantly increasing within Astrophysics, due to the huge amount of multi-wavelength data collected every day, characterized by complex and high-volume information requiring efficient and, as much as possible, automated exploration tools. Furthermore, to accomplish main and legacy science objectives of future or incoming large and deep survey projects, such as James Webb Space Telescope (JWST), James Webb Space Telescope (LSST), and Euclid, a crucial role is played by an accurate estimation of photometric redshifts, whose knowledge would permit the detection and analysis of extended and peculiar sources by disentangling low-z from high-z sources and would contribute to solve the modern cosmological discrepancies. The recent photometric redshift data challenges, organized within several survey projects, like LSST and Euclid, pushed the exploitation of the observed multi-wavelength and multi-dimensional data or ad hoc simulated data to improve and optimize the photometric redshifts prediction and statistical characterization based on both Spectral Energy Distribution (SED) template fitting and machine learning methodologies. They also provided a new impetus in the investigation of hybrid and deep learning techniques, aimed at conjugating the positive peculiarities of different methodologies, thus optimizing the estimation accuracy and maximizing the photometric range coverage, which are particularly important in the high-z regime, where the spectroscopic ground truth is poorly available. In such a context, we summarize what was learned and proposed in more than a decade of research.

Publisher

Frontiers Media SA

Subject

Astronomy and Astrophysics

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3