COVID-19Base v3: Update of the knowledgebase for drugs and biomedical entities linked to COVID-19

Author:

Basit Syed Abdullah,Qureshi Rizwan,Musleh Saleh,Guler Reto,Rahman M. Sohel,Biswas Kabir H.,Alam Tanvir

Abstract

COVID-19 has taken a huge toll on our lives over the last 3 years. Global initiatives put forward by all stakeholders are still in place to combat this pandemic and help us learn lessons for future ones. While the vaccine rollout was not able to curb the spread of the disease for all strains, the research community is still trying to develop effective therapeutics for COVID-19. Although Paxlovid and remdesivir have been approved by the FDA against COVID-19, they are not free of side effects. Therefore, the search for a therapeutic solution with high efficacy continues in the research community. To support this effort, in this latest version (v3) of COVID-19Base, we have summarized the biomedical entities linked to COVID-19 that have been highlighted in the scientific literature after the vaccine rollout. Eight different topic-specific dictionaries, i.e., gene, miRNA, lncRNA, PDB entries, disease, alternative medicines registered under clinical trials, drugs, and the side effects of drugs, were used to build this knowledgebase. We have introduced a BLSTM-based deep-learning model to predict the drug-disease associations that outperforms the existing model for the same purpose proposed in the earlier version of COVID-19Base. For the very first time, we have incorporated disease-gene, disease-miRNA, disease-lncRNA, and drug-PDB associations covering the largest number of biomedical entities related to COVID-19. We have provided examples of and insights into different biomedical entities covered in COVID-19Base to support the research community by incorporating all of these entities under a single platform to provide evidence-based support from the literature. COVID-19Base v3 can be accessed from: https://covidbase-v3.vercel.app/. The GitHub repository for the source code and data dictionaries is available to the community from: https://github.com/91Abdullah/covidbasev3.0.

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3