Assessing future heat stress across China: combined effects of heat and relative humidity on mortality

Author:

Zhang Guwei,Han Ling,Yao Jiajun,Yang Jiaxi,Xu Zhiqi,Cai Xiuhua,Huang Jin,Pei Lin

Abstract

This study utilizes China’s records of non-accidental mortality along with twenty-five simulations from the NASA Earth Exchange Global Daily Downscaled Projections to evaluate forthcoming heat stress and heat-related mortality across China across four distinct scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, and SSP5-8.5). The findings demonstrate a projected escalation in the heat stress index (HSI) throughout China from 2031 to 2100. The most substantial increments compared to the baseline (1995–2014) are observed under SSP5-8.5, indicating a rise of 7.96°C by the year 2100, while under SSP1-2.6, the increase is relatively modest at 1.54°C. Disparities in HSI growth are evident among different subregions, with South China encountering the most significant elevation, whereas Northwest China exhibits the lowest increment. Projected future temperatures align closely with HSI patterns, while relative humidity is anticipated to decrease across the majority of areas. The study’s projections indicate that China’s heat-related mortality is poised to surpass present levels over the forthcoming decades, spanning a range from 215% to 380% from 2031 to 2100. Notably, higher emission scenarios correspond to heightened heat-related mortality. Additionally, the investigation delves into the respective contributions of humidity and temperature to shifts in heat-related mortality. At present, humidity exerts a greater impact on fluctuations in heat-related mortality within China and its subregions. However, with the projected increase in emissions and global warming, temperature is expected to assume a dominant role in shaping these outcomes. In summary, this study underscores the anticipated escalation of heat stress and heat-related mortality across China in the future. It highlights the imperative of emission reduction as a means to mitigate these risks and underscores the variances in susceptibility to heat stress across different regions.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health

Reference49 articles.

1. Climate change 2021;Masson-Delmotte,2021

2. Climate change 2022: mitigation of climate change;PR,2022

3. Climate projections of a multivariate heat stress index: the role of downscaling and bias correction;Casanueva;Geosci Model Dev,2019

4. Temporally compound heat wave events and global warming: an emerging hazard;Baldwin;Earths Future,2019

5. Near-fatal heat stroke during the 1995 heat wave in Chicago;Dematte;Ann Intern Med,1998

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3