A novel Energy Resources Allocation Management model for air pollution reduction

Author:

Khorsandi Armita,Li Liping

Abstract

Although air pollution has been reduced in various industrial and crowded cities during the COVID-19 pandemic, curbing the high concentration of the crisis of air pollution in the megacity of Tehran is still a challenging issue. Thus, identifying the major factors that play significant roles in increasing contaminant concentration is vital. This study aimed to propose a mathematical model to reduce air pollution in a way that does not require citizen participation, limitation on energy usage, alternative energies, any policies on fuel-burn style, extra cost, or time to ensure that consumers have access to energy adequately. In this study, we proposed a novel framework, denoted as the Energy Resources Allocation Management (ERAM) model, to reduce air pollution. The ERAM is designed to optimize the allocation of various energies to the recipients. To do so, the ERAM model is simulated based on the magnitude of fuel demand consumption, the rate of air pollution emission generated by each energy per unit per consumer, and the air pollution contribution produced by each user. To evaluate the reflectiveness and illustrate the feasibility of the model, a real-world case study, i.e., Tehran, was employed. The air pollution emission factors in Tehran territory were identified by considering both mobile sources, e.g., motorcycles, cars, and heavy-duty vehicles, and stationary sources, e.g., energy conversion stations, industries, and household and commercial sectors, which are the main contributors to particulate matter and nitrogen dioxide. An elaborate view of the results indicates that the ERAM model on fuel distribution could remarkably reduce Tehran's air pollution concentration by up to 14%.

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3