A Visualized Dynamic Prediction Model for Lymphatic Metastasis in Ewing's Sarcoma for Smart Medical Services

Author:

Li Wenle,Xu Chan,Hu Zhaohui,Dong Shengtao,Wang Haosheng,Liu Qiang,Tang Zhi-Ri,Li Wanying,Wang Bing,Lei Zhi,Yin Chengliang

Abstract

BackgroundThis study aims to predict the lymphatic metastasis in Ewing's sarcoma (ES) patients by nomogram. The risk of lymphatic metastasis in patients with ES was predicted by the built model, which provided guidance for the clinical diagnosis and treatment planning.MethodsA total of 929 patients diagnosed with ES were enrolled from the year of 2010 to 2016 in the Surveillance, Epidemiology, and End Results (SEER) database. The nomogram was established to determine predictive factors of lymphatic metastasis according to univariate and multivariate logistic regression analysis. The validation of the model performed using multicenter data (n = 51). Receiver operating characteristics (ROC) curves and calibration plots were used to evaluate the prediction accuracy of the nomogram. Decision curve analysis (DCA) was implemented to illustrate the practicability of the nomogram clinical application. Based on the nomogram, we established a web calculator to visualize the risk of lymphatic metastases. We further plotted Kaplan-Meier overall survival (OS) curves to compare the survival time of patients with and without lymphatic metastasis.ResultsIn this study, the nomogram was established based on six significant factors (survival time, race, T stage, M stage, surgery, and lung metastasis), which were identified for lymphatic metastasis in ES patients. The model showed significant diagnostic accuracy with the value of the area under the curve (AUC) was 0.743 (95%CI: 0.714–0.771) for SEER internal validation and 0.763 (95%CI: 0.623–0.871) for multicenter data external validation. The calibration plot and DCA indicated that the model had vital clinical application value.ConclusionIn this study, we constructed and developed a nomogram with risk factors to predict lymphatic metastasis in ES patients and validated accuracy of itself. We found T stage (Tx OR = 2.540, 95%CI = 1.433–4.503, P < 0.01), M stage (M1, OR = 2.061, 95%CI = 1.189–3.573, P < 0.05) and survival time (OR = 0.982, 95%CI = 0.972–0.992, P < 0.001) were important independent factors for lymphatic metastasis in ES patients. Furthermore, survival time in patients with lymphatic metastasis or unclear situation (P < 0.0001) was significantly lower. It can help clinicians make better decisions to provide more accurate prognosis and treatment for ES patients.

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health

Reference36 articles.

1. Ewing sarcoma;Grünewald;Nat Rev Dis Primers.,2018

2. Review: ewing sarcoma predisposition;Gargallo;Pathol Oncol Res.,2020

3. Role of immunotherapy in Ewing sarcoma;Morales;J Immunother Cancer,2020

4. Malignant round cell tumors: the Ewing sarcoma and beyond;Haybaeck;Pathologe.,2020

5. Ewing's sarcoma;Riggi;N Engl J Med.,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3