Explainable machine learning framework to predict the risk of work-related neck and shoulder musculoskeletal disorders among healthcare professionals

Author:

Luo Na,Xu Xinyi,Jiang Biling,Zhang Zeyuan,Huang Jingyu,Zhang Xiulan,Tan Qiong,Wang Xuanyi,Bai Siyi,Liu Suyi,Pan Yishuang,Tang Chi,Zhu Pinghua

Abstract

ObjectiveThis study aims to develop risk prediction models for neck and shoulder musculoskeletal disorders among healthcare professionals.MethodsA stratified sampling method was employed to select employees from medical institutions in Nanning City, yielding 617 samples. The Boruta algorithm was used for feature selection, and various models, including Tree-Based Models, Single Hidden-Layer Neural Network Models (MLP), Elastic Net Models (ENet), and Support Vector Machines (SVM), were applied to predict the selected variables, utilizing SHAP algorithms for individual-level local explanations.ResultsThe SVM model excels in both Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) and exhibits more stable performance when generalizing to unseen data. The Random Forest model exhibited relatively high overall performance on the training set. The MLP model emerges as the most consistent and accurate in predicting shoulder musculoskeletal disorders, while the SVM model shows strong fitting capabilities during the training phase, with occupational factors identified as the main contributors to WMSDs.ConclusionThis study successfully constructs work-related musculoskeletal disorder risk prediction models for healthcare professionals, enabling a quantitative analysis of the impact of occupational factors. This advancement is beneficial for future economical and convenient work-related musculoskeletal disorder screening in healthcare professions.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3