Safe(r)-by-design principles in the thermoplastics industry: guidance on release assessment during manufacture of nano-enabled products

Author:

McLean Polly,Hanlon James,Salmatonidis Apostolos,Galea Karen S.,Brooker Finlay,Citterio Cristiano,Magni Daniele,Vázquez-Campos Socorro,Lotti Davide,Boyles Matthew S. P.

Abstract

BackgroundThe application of nanomaterials (NMs) and nano-enabled products (NEPs) across many industries has been extensive and is still expanding decades after first being identified as an emerging technology. Additive manufacturing has been greatly impacted and has seen the benefits of integrating NMs within products. With the expansion of nanotechnology, there has been a need to develop more adaptive and responsive methods to ascertain risks and ensure technology is developed safely. The Safe(r)-by-Design (SbD) concept can be used to establish safe parameters and minimise risks during the materials’ lifecycle, including the early stages of the supply chain. Exposure monitoring has advanced in recent years with the creation of standardised protocols for occupational exposure assessment of nano-objects and their aggregates and agglomerates (NOAA).MethodsTo aid in the development of an online SbD-supporting platform by the EU-funded project SAbyNA, we adopt a Europe Standard for monitoring release of NOAA to identify if a greater release of NOAA is associated with incorporation of NMs within NEPs compared to a polymer matrix alone. Case studies included filaments of polypropylene (PP) with nano-Ag or polycarbonate (PC) with single-walled carbon nanotubes (SWCNTs). NMs were received in masterbatch, and therefore previously modified to align with SbD interventions. Results were collected in line with European Standard recommendations: monitoring particle concentrations using direct reading instruments (DRI), sampling for offline chemical and morphological analysis, and collecting contextual information.Results and discussionBased on the criteria described in the European standard (BS EN 17058), data from both case studies identified that inhalation exposure relating to NM was “unlikely”. Despite this, during the production of the SWCNT-PC filaments, some noteworthy observations were made, including several DRI activity measurements shown to be higher than background levels, and material morphologically similar to the reference SWCNT/polymeric masterbatch observed in offline analysis. The data collected during this campaign were used to discuss choices available for data interpretation and decision-making in the European Standard for monitoring release of NOAA and also to facilitate the development of SAbyNA’s user-friendly industry platform for the SbD of NMs and NEPs.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3