Impacts of Regional Speed Control Strategy Based on Macroscopic Fundamental Diagram on Energy Consumption and Traffic Emissions: A Case Study of Beijing

Author:

Wang Wensi,Wang Zirui,Wang Guangjun,Yu Bin,Xu Yuhe,Yu Kun

Abstract

Numerous studies shown that particulate matter in the ambient environment has a significant impact on the health of the respiratory system. To understand the interrelationships between urban built environment, transportation operations and health, this study proposes an innovative approach that uses real-world GPS datasets to calculate energy consumption and emissions from transportation. The experiment used the traffic operation state in the Fourth Ring Road of Beijing as the research object and tested the impact of using the Regional speed optimization (RSO) strategy based on Macroscopic Fundamental Diagram (MFD) on energy consumption and emissions during peak hours. The impact of traffic emission on the health of roadside pedestrians is also considered. Changes in PM2.5 concentrations around four different built-up areas were calculated and compared. The computational experiments indicate that the PM2.5 pollutants exhausted by the traffic on the Ring Road during peak hours can reach up to 250 μg/m3, while the traffic emission on general roads near residential areas is only 50 μg/m3. Adopting Regional speed optimization can reduce the energy consumption of the road network by up to 18.8%. For roadside runners, the PM2.5 inhalation caused by night running in commercial and recreational areas is about 1.3-2.6 times that of night running in residential areas. Compared with morning or night running, the risk of respiratory disease caused by PM2.5 inhalation was about 10.3% higher than commuter running behavior. The research results provide a useful reference for energy conservation and emission reduction control strategies for different road types in cities and help existing cities to establish a traveler health evaluation system caused by traffic operation.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3