Assessment of indoor air quality in health clubs: insights into (ultra)fine and coarse particles and gaseous pollutants

Author:

Peixoto Cátia,Pereira Maria do Carmo,Morais Simone,Slezakova Klara

Abstract

IntroductionExercising on regular basis provides countless health benefits. To ensure the health, well-being and performance of athletes, optimal indoor air quality, regular maintenance and ventilation in sport facilities are essential.MethodsThis study assessed the levels of particulate, down to the ultrafine range (PM10, PM2.5, and particle number concentration in size range of 20–1,000 nm, i.e., – PNC20-1000 nm), gaseous pollutants (total volatile organic compounds – TVOCs, CO2, and O3) and comfort parameters (temperature – T, relative humidity – RH) in different functional spaces of health clubs (n = 8), under specific occupancy and ventilation restrictions.Results and DiscussionIn all HCs human occupancy resulted in elevated particles (up to 2–3 times than those previously reported), considering mass concentrations (PM10: 1.9–988.5 μg/m3 PM2.5: 1.6–479.3 μg/m3) and number (PNC 1.23 × 103 – 9.14 × 104 #/cm3). Coarse and fine PM indicated a common origin (rs = 0.888–0.909), while PNC showed low–moderate associations with particle mass (rs = 0.264–0.629). In addition, up to twice-higher PM and PNC were detected in cardiofitness & bodybuilding (C&B) areas as these spaces were the most frequented, reinforcing the impacts of occupational activities. In all HCs, TVOCs (0.01–39.67 mg/m3) highly exceeded the existent protection thresholds (1.6–8.9 times) due to the frequent use of cleaning products and disinfectants (2–28 times higher than in previous works). On contrary to PM and PNC, TVOCs were higher (1.1–4.2 times) in studios than in C&B areas, due to the limited ventilations combined with the smaller room areas/volumes. The occupancy restrictions also led to reduced CO2 (122–6,914 mg/m3) than previously observed, with the lowest values in HCs with natural airing. Finally, the specific recommendations for RH and T in sport facilities were largely unmet thus emphasizing the need of proper ventilation procedures in these spaces.

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3