Spinal disease diagnosis assistant based on MRI images using deep transfer learning methods

Author:

Xuan Junbo,Ke Baoyi,Ma Wenyu,Liang Yinghao,Hu Wei

Abstract

IntroductionIn light of the potential problems of missed diagnosis and misdiagnosis in the diagnosis of spinal diseases caused by experience differences and fatigue, this paper investigates the use of artificial intelligence technology for auxiliary diagnosis of spinal diseases.MethodsThe LableImg tool was used to label the MRIs of 604 patients by clinically experienced doctors. Then, in order to select an appropriate object detection algorithm, deep transfer learning models of YOLOv3, YOLOv5, and PP-YOLOv2 were created and trained on the Baidu PaddlePaddle framework. The experimental results showed that the PP-YOLOv2 model achieved a 90.08% overall accuracy in the diagnosis of normal, IVD bulges and spondylolisthesis, which were 27.5 and 3.9% higher than YOLOv3 and YOLOv5, respectively. Finally, a visualization of the intelligent spine assistant diagnostic software based on the PP-YOLOv2 model was created and the software was made available to the doctors in the spine and osteopathic surgery at Guilin People's Hospital.Results and discussionThis software automatically provides auxiliary diagnoses in 14.5 s on a standard computer, is much faster than doctors in diagnosing human spines, which typically take 10 min, and its accuracy of 98% can be compared to that of experienced doctors in the comparison of various diagnostic methods. It significantly improves doctors' working efficiency, reduces the phenomenon of missed diagnoses and misdiagnoses, and demonstrates the efficacy of the developed intelligent spinal auxiliary diagnosis software.

Publisher

Frontiers Media SA

Subject

Public Health, Environmental and Occupational Health

Reference20 articles.

1. Epidemiological status and development of diagnosis and treatment of spinal and joint degenerative diseases;Wei;J Orthop Clin Res.,2016

2. Deep learning for automatic localization, identification, and segmentation of vertebral bodies in volumetric MR images;Suzani,2015

3. Survey of machine learning applications in the clinical diagnosis of spinal diseases;Cui;J Chin Comput Syst.,2020

4. Review on intelligence diagnosis of spine disease based on machine learning;Liu;Comput Sci.,2021

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3