CRISPR gene editing to improve crop resistance to parasitic plants

Author:

Jhu Min-Yao,Ellison Evan E.,Sinha Neelima R.

Abstract

Parasitic plants pose a significant threat to global agriculture, causing substantial crop losses and hampering food security. In recent years, CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) gene-editing technology has emerged as a promising tool for developing resistance against various plant pathogens. Its application in combating parasitic plants, however, remains largely unexplored. This review aims to summarise current knowledge and research gaps in utilising CRISPR to develop resistance against parasitic plants. First, we outline recent improvements in CRISPR gene editing tools, and what has been used to combat various plant pathogens. To realise the immense potential of CRISPR, a greater understanding of the genetic basis underlying parasitic plant-host interactions is critical to identify suitable target genes for modification. Therefore, we discuss the intricate interactions between parasitic plants and their hosts, highlighting essential genes and molecular mechanisms involved in defence response and multilayer resistance. These include host resistance responses directly repressing parasitic plant germination or growth and indirectly influencing parasitic plant development via manipulating environmental factors. Finally, we evaluate CRISPR-mediated effectiveness and long-term implications for host resistance and crop improvement, including inducible resistance response and tissue-specific activity. In conclusion, this review highlights the challenges and opportunities CRISPR technology provides to combat parasitic plants and provides insights for future research directions to safeguard global agricultural productivity.

Funder

Bill and Melinda Gates Foundation

National Science Foundation

California Tomato Research Institute

Publisher

Frontiers Media SA

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3