Influence of specific collagen peptides and 12-week concurrent training on recovery-related biomechanical characteristics following exercise-induced muscle damage—A randomized controlled trial

Author:

Bischof Kevin,Stafilidis Savvas,Bundschuh Larissa,Oesser Steffen,Baca Arnold,König Daniel

Abstract

IntroductionIt has been shown that short-term ingestion of collagen peptides improves markers related to muscular recovery following exercise-induced muscle damage. The objective of the present study was to investigate whether and to what extent a longer-term specific collagen peptide (SCP) supplementation combined with a training intervention influences recovery markers following eccentric exercise-induced muscle damage.MethodsFifty-five predominantly sedentary male participants were assigned to consume either 15 g SCP or placebo (PLA) and engage in a concurrent training (CT) intervention (30 min each of resistance and endurance training, 3x/week) for 12 weeks. Before (T1) and after the intervention (T2), eccentric muscle damage was induced by 150 drop jumps. Measurements of maximum voluntary contraction (MVC), rate of force development (RFD), peak RFD, countermovement jump height (CMJ), and muscle soreness (MS) were determined pre-exercise, immediately after exercise, and 24 and 48 h post-exercise. In addition, body composition, including fat mass (FM), fat-free mass (FFM), body cell mass (BCM) and extracellular mass (ECM) were determined at rest both before and after the 12-week intervention period.ResultsThree-way mixed ANOVA showed significant interaction effects in favor of the SCP group. MVC (p = 0.02, ηp2 = 0.11), RFD (p < 0.01, ηp2 = 0.18), peak RFD (p < 0.01, ηp2 = 0.15), and CMJ height (p = 0.046, ηp2 = 0.06) recovered significantly faster in the SCP group. No effects were found for muscle soreness (p = 0.66) and body composition (FM: p = 0.41, FFM: p = 0.56, BCM: p = 0.79, ECM: p = 0.58).ConclusionIn summary, the results show that combining specific collagen peptide supplementation (SCP) and concurrent training (CT) over a 12-week period significantly improved markers reflecting recovery, specifically in maximal, explosive, and reactive strength. It is hypothesized that prolonged intake of collagen peptides may support muscular adaptations by facilitating remodeling of the extracellular matrix. This, in turn, could enhance the generation of explosive force.Clinical trial registrationClinicalTrials.gov, identifier ID: NCT05220371.

Publisher

Frontiers Media SA

Subject

Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3