Nitric oxide modulates folate-mediated one-carbon metabolism and mitochondrial energy levels of peaches during cold storage

Author:

Yang Zhifeng,Zhu Shuhua,Wang Xiaoyu,Chen Changbao,Huang Dandan,Feng Jianrong

Abstract

Folate-mediated one-carbon metabolism (FOCM) is closely associated with postharvest preservation. This study investigated the effects of exogenous nitric oxide (NO) on FOCM, storage quality, energy metabolism, and mitochondrial membrane integrity in cold-storage peach fruit. In this experiment, peaches were soaked with 1.5 mmol L−1S-nitrosoglutathione (GSNO) as NO donor, and the negative treatment (NT) solution containing 5 μmol L−1 carboxy-PTIO (c-PTIO, NO scavenger), 200 μmol L−1 NG-Nitro-L-arginine methyl ester (L-NAME, NO synthase-like enzyme inhibitor), and 200 μmol L−1 sodium tungstate dihydrate (nitrate reductase inhibitor) and stored at 0°C. The results showed that NO decreased the activity of S-adenosylmethionine synthase and S-adenosylhomocysteine hydrolase and increased the activity of methionine sulfoxide reductase A, as well as the content of N5-methyl-THF, the ratio of tetrahydrofolate (THF), homocysteine, methionine, S-adenosylmethionine (SAM), and SAM to S-adenosylhomocysteine compared with the control, indicating that NO effectively increased FOCM flux by affecting the activity of FOCM enzymes. Meanwhile, NO increased the activities of H+-ATPase, Ca2+-ATPase, cytochrome c oxidase, succinate dehydrogenase, and the contents of adenosine triphosphate and adenosine diphosphate, and maintained high energy charge in peaches during storage. NO retarded the increase in mitochondrial permeability transition, reactive oxygen species content, and the decrease in mitochondrial membrane fluidity, membrane potential, and swelling. NT treatment exhibited the opposite results. In conclusion, these results suggested that NO could induce the accumulation of folate and FOCM flux and maintain mitochondrial energy levels, which might be responsible for maintaining the quality of peaches during cold storage.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Food Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3