Red Wine and Health: Approaches to Improve the Phenolic Content During Winemaking

Author:

Vejarano Ricardo,Luján-Corro Mariano

Abstract

There is ample evidence regarding the health benefits of red wine consumption due to its content of phenolic compounds, as an alternative to improve the state of health and prevent various diseases, being the implementation of procedures that allow a greater extraction and stability of phenolic compounds during the elaboration a key aspect. The first part of this review summarizes some studies, mostly at the preclinical level, on the mechanisms by which phenolic compounds act in the human organism, taking advantage of their antioxidant, anti-inflammatory, antitumor, antithrombotic, antiatherogenic, antimicrobial, antiviral, and other activities. Although the migration of grape components into the must/wine occurs during the winemaking process, the application of new technologies may contribute to increasing the content of phenolic compounds in the finished wine. Some of these technologies have been evaluated on an industrial scale, and in some cases, they have been included in the International Code of Oenological Practice by the International Organization of Vine and Wine (OIV). In this sense, the second part of this review deals with the use of these novel technologies that can increase, or at least maintain, the polyphenol content. For example, in the pre-fermentative stage, phenolic extraction can be increased by treating the berries or must with high pressures, pulsed electric fields (PEF), ultrasound (US), e-beam radiation or ozone. At fermentative level, yeasts with high production of pyranoanthocyanins and/or their precursor molecules, low polyphenol absorption, and low anthocyanin-β-glucosidase activity can be used. Whereas, at the post-fermentative level, aging-on-lees (AOL) can contribute to maintaining polyphenol levels, and therefore transmitting health benefits to the consumer.

Publisher

Frontiers Media SA

Subject

Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3