Coated Zinc Oxide Improves Growth Performance of Weaned Piglets via Gut Microbiota

Author:

Sun Yiwei,Ma Ning,Qi Zengkai,Han Meng,Ma Xi

Abstract

Weaned piglets stayed in transitional stages of internal organ development and external environment change. The dual stresses commonly caused intestinal disorders followed by damaged growth performance and severe diarrhea. High dose of zinc oxide could improve production efficiency and alleviate disease status whereas caused serious environmental pollution. This research investigated if coated ZnO (C_ZnO) in low dose could replace the traditional dose of ZnO to improve the growth performance, intestinal function, and gut microbiota structures in the weaned piglets. A total of 126 cross-bred piglets (7.0 ± 0.5 kg body weight) were randomly allocated into three groups and fed a basal diet or a basal diet supplemented with ZnO (2,000 mg Zn/kg) or C_ZnO (500 mg Zn/kg), respectively. The test lasted for 6 weeks. C_ZnO improved average daily gain (ADG) and feed efficiency, alleviated diarrhea, decreased the lactulose/mannitol ratio (L/M) in the urine, increased the ileal villus height, and upregulated the expression of Occludin in the ileal tissue and the effect was even better than a high concentration of ZnO. Importantly, C_ZnO also regulated the intestinal flora, enriching Streptococcus and Lactobacillus and removing Bacillus and intestinal disease-associated pathogens, including Clostridium_sensu_stricto_1 and Cronobacter in the ileal lumen. Although, colonic microbiota remained relatively stable, the marked rise of Blautia, a potential probiotic related to body health, could still be found. In addition, C_ZnO also led to a significant increase of acetate and propionate in both foregut and hindgut. Collectively, a low concentration of C_ZnO could effectively promote growth performance and reduce diarrhea through improving small intestinal morphology and permeability, enhancing the barrier function, adjusting the structure of gut microbiota, and raising the concentration of short-chain fatty acids (SCFAs) in the weaned piglets.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Food Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3