Short-Term Ketogenic Diet Induces a Molecular Response That Is Distinct From Dietary Protein Restriction

Author:

Kalafut Krystle C.,Mitchell Sarah J.,MacArthur Michael R.,Mitchell James R.

Abstract

There is increasing interest in utilizing short-term dietary interventions in the contexts of cancer, surgical stress and metabolic disease. These short-term diets may be more feasible than extended interventions and may be designed to complement existing therapies. In particular, the high-fat, low-carbohydrate ketogenic diet (KD), traditionally used to treat epilepsy, has gained popularity as a potential strategy for weight loss and improved metabolic health. In mice, long-term KD improves insulin sensitivity and may extend lifespan and healthspan. Dietary protein restriction (PR) causes increased energy expenditure, weight loss and improved glucose homeostasis. Since KD is inherently a low-protein diet (10% of calories from protein vs. >18% in control diet), here we evaluated the potential for mechanistic overlap between PR and KD via activation of a PR response. Mice were fed control, protein-free (PF), or one of four ketogenic diets with varying protein content for 8 days. PF and KD both decreased body weight, fat mass, and liver weights, and reduced fasting glucose and insulin levels, compared to mice fed the control diet. However, PF-fed animals had significantly improved insulin tolerance compared to KD. Furthermore, contrary to the PF-fed mice, mice fed ketogenic diets containing more than 5% of energy from protein did not increase hepatic Fgf21 or brown adipose Ucp1 expression. Interestingly, mice fed KD lacking protein demonstrated greater elevations in hepatic Fgf21 than mice fed a low-fat PF diet. To further elucidate potential mechanistic differences between PF and KD and the interplay between dietary protein and carbohydrate restriction, we conducted RNA-seq analysis on livers from mice fed each of the six diets and identified distinct gene sets which respond to dietary protein content, dietary fat content, and ketogenesis. We conclude that KD with 10% of energy from protein does not induce a protein restriction response, and that the overlapping metabolic benefits of KD and PF diets may occur via distinct underlying mechanisms.

Funder

National Institutes of Health

Publisher

Frontiers Media SA

Subject

Nutrition and Dietetics,Endocrinology, Diabetes and Metabolism,Food Science

Reference70 articles.

1. The effect of retardation of growth upon the breeding period and duration of life of rats.;Osborne;Science.,1917

2. The effect of retarded growth upon the length of life span and upon the ultimate body size. 1935.;McCay;Nutrition.,1989

3. Promoting health and longevity through diet: from model organisms to humans.;Fontana;Cell.,2015

4. Ketogenic diet decreases oxidative stress and improves mitochondrial respiratory complex activity.;Greco;J Cereb Blood Flow Metab.,2016

5. A ketogenic diet extends longevity and healthspan in adult mice.;Roberts;Cell Metab.,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3